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ABSTRACT

A novel approach for crop-specific prediction of future crop
planting and the development of corresponding uncertainty
measures for all predictions is proposed. Using transition
probabilities, predictive crop categories are first developed to
predict crop-specific planting in the pilot study state of Illi-
nois. Corresponding entropy layers are developed concur-
rently and can be used to flag survey sample units based on
the level of uncertainty associated with the crop predictions.
This allows survey units to be prioritized for imputation or for
data collection based on whether the predicted value is suf-
ficiently reliable. Further, the predicted acreage is assigned
only to those survey units for which the prediction has the
potential to be the sufficiently accurate. This approach can
provide a solid methodology for reducing survey costs and
farmer response burdens without introducing estimation bias
or incurring severe losses of statistical efficiency. This has
far-reaching implications for the sample design, quality, and
timeliness of results for future surveys.

Index Terms— Crop prediction, Entropy layers, Crop-
land Data Layers, Survey imputation

1. INTRODUCTION

Early season crop predictions (ESCP) are key inputs to crop
monitoring and yield assessment models and decision sup-
port systems and are used by agribusiness. Recent research
has explored how ESCP may be used to augment traditional
large-scale surveys conducted by the United States Depart-
ment of Agriculture (USDA) National Agricultural Statistics
Service (NASS). Although crop-specific prediction has been
conducted [1][2], these methods do not incorporate measures
of quality for individual crop predictions, which significantly
increases prediction utility specifically when used for sur-
vey imputation. This paper describes two methodological
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advances: 1) novel crop-prediction results through the appli-
cation of Transition Probabilities (TP) and 2) a new method
that provides entropy metrics for all crop predictions. The en-
tropy metrics, defined as H = [ p(z) log{p(x)}dz, identify
the predictability of the crop prediction results.

A variety of supervised methods are commonly used for
land cover classification [3]. These methods include Maxi-
mum Likelihood, K-Nearest Neighborhood, K-means, Paral-
lelepiped, Minimum Distance to the Mean, Decision Trees,
Artificial Neural Network and Fuzzy classifiers. These su-
pervised methods rely on sampling ground reference data to
improve classification and computational performance. Land-
cover prediction differs from supervised land cover classifica-
tion because predictions are usually generated without satel-
lite imagery [1]. Therefore, prediction of land cover cate-
gories is computed from historic land cover data and other
ancillary information acquired in the past.

In this study, TP was the model selected to produce the
predictive crop classifications known as predictive Cropland
Data Layers (PCDLs) in this paper. TP can use all available
crop rotation data inputs rather than just a sample of the data,
which is common in supervised classification [4]. Using all
available crop rotation data results in higher accuracies than
algorithms that are limited by sampling schemes.

Some crop rotation patterns are uncommon and, conse-
quently, more difficult to predict. Therefore, the categorical
outcomes associated with certain areas have different degrees
of uncertainty. In this work, entropy is used to quantify un-
certainty, and an entropy layer is produced for each prediction
layer. The relationship between uncertainty and prediction ac-
curacy can be leveraged and applied in an area-frame survey,
particularly for sample selection and imputation.

The objective of this study is to produce predictive crop
specific land cover classifications using TP at 30 meters as
well as produce entropy layers for the corresponding predic-
tions. Further, an example illustrates how the PCDLs and en-
tropies can be used in tandem to target samples for imputation
in a large-scale survey.

The paper is organized as follows: The study area and test
data are described in Section 2. The study methodology is
introduced in Section 3 followed by results and discussion in



Section 4. Finally, the conclusions are presented in Section 5.

2. STUDY AREA AND DATA

2.1. Study Area - Illinois, United States

Ilinois, United States (U.S.) is the study area for this re-
search and is highlighted in red in Figure 1. Illinois is located
in the center of the agriculturally intensive Corn Belt in the
Midwest of the U.S. Illinois’ land area is about 35 million
acres (14 million hectares) of which 24 million acres (10 mil-
lion hectares) are cropland. In terms of U.S. production, Illi-
nois ranks near the top of states for total planted area, where
corn and soybeans are the two major crops.
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Fig. 1. National Agricultural Statistics Service — Cropland
Data Layer. Illinois is highlighted in red.

2.2. Cropland Data Layers — 2008 forward

The NASS Cropland Data Layers (CDL) are raster, crop-
specific land cover data sets produced at a 30-meter res-
olution. Moderate resolution satellite imagery, including
Landsat 8 and Sentinel 2 A&B, acquired throughout the
growing season are the satellite input data to a See5 deci-
sion tree classifier. Farm Service Agency Common Land
Unit (CLU) and 578 administrative data are used as the
crop specific training and validation data [5]. CDLs for all
states in the conterminous U.S. are available since 2008.
The CDLs are highly accurate achieving accuracies of 85-
95% for major crops in large crop production states [6].
The CDLs are released on an annual basis following the
growing season on the Cropland CROS web application
https://cropcros.azurewebsites.net/.

2.3. Farm Service Agency Common Land Unit Data

Although the publicly available past CDLs are used as time
series inputs for crop prediction, the corresponding past
years’ Farm Service Agency (FSA) Common Land Unit
and 578 administrative data are used when available instead
of the CDLs as these data are in situ ground reference data
provided by farmers. Each year, farmers participating in
a USDA program or purchasing crop insurance report the
crops planted and the location of their fields, defined by the
CLU polygons, to more than 2300 FSA offices across the
U.S. [7][8]. In Illinois, approximately 99% of the cropland
is identified in terms of CLU polygons. Farmers can report
planting a single crop or multiple crops within a CLU. Only
single crop CLUs are used as inputs for crop prediction for
this study as the exact location of the crop can be determined.

2.4. NASS June Area Survey Segments

NASS’s primary area frame-based survey is the June Area.
Survey in which approximately 9,000 one square mile sam-
ple units (segments) are visited by survey interviewers at the
beginning of each growing season to collect crop type and
acreage information. Segments are randomly selected for in-
person enumeration with a much larger proportion of seg-
ments selected in areas with greater than 50% cultivated land.
For this study, the JAS segments in 2018, 2019 and 2021 are
used to illustrate how the new predictive CDLs and entropy
layers can be used to identify segments that may not require
in-person enumeration and can be imputed.

2.5. Validation Data

The corresponding FSA CLU and 578 data, which are avail-
able at the end of the growing season, are used to validate
the crop types in the same year’s predictive CDL. Although
the predictive CDLs can be produced before the growing sea-
son, the validation data are not available until the end of the
growing season. The United States Geological Survey Na-
tional Land Cover Database set points (for nonagricultural
categories) are used as ground reference to validate the nona-
gricultural (water, urban, forest) categories [9].

3. METHODLOGY

3.1. Predictive CDLs

Conditioning on the relative frequencies of previously ob-
served crop rotation patterns, a TP model is used to produce
the state-level PCDLs that correspond to the highest predic-
tive probability. The transition probability of a categorical
stochastic process X; at the time ¢ is defined as 7j, _j,: =
Pr(X;, = i|Xy, = j1,...,Xs, = jp), where p denotes the
time length (in years) of the input pattern, and 4, j1,...,Jp €



S represents the states of the process described by a sets .S of
possible categorical outcomes.

The relative frequency of each land-cover change is pro-
portional to the number of times that a specific pattern of
length p has been observed in the study area through time.
However, if a new pattern has not been observed in the past
data, shorter time windows are used. In the worst-case sce-
nario, the counting process stops with the assessment of a
non-time dependent distribution estimated as if dealing with
a stationary distribution.

This simple procedure can be efficiently implemented on
recent parallel computing technology using simultaneously
the single-instruction multiple-data (SIMD) paradigm on sev-
eral processing cores. Large areas can be processed within a
few minutes without requiring the use of a sampling scheme
to build the training set.

3.2. Entropy Layers

The evaluation of the output-class predictability can be re-
lated to the concept of intrinsic uncertainty of the model es-
timated for a given pattern. Thus, the entropy layer provides
information that spatially varies accordingly to the land-cover
changes previously observed.

Common patterns are more predictable than uncommon
ones, therefore they have much lower entropy values and their
predictions are often more accurate. Although the entropy
layers can be used as a proxy for prediction inaccuracy, they
should not be confused as such.

3.3. Targeting JAS Segments for Imputation

The PCDL and corresponding entropy layers are useful tools
for guiding the acreage imputation of area-frame surveys,
since they provide early indications of the crop types that are
likely to be planted. Furthermore, the PCDL can also be used
for more efficient and cost-effective sample-allocation proce-
dures, or for reducing respondent burden by omitting survey
questions regarding quantities available from other sources
of information. However, the quality of the information pro-
vided at the segment level requires further assessment before
being used for imputation in a survey.

To develop guidelines and thresholds for targeting high-
quality segments, the ground reference data and the PCDL
have been summarized within each JAS segment providing
the acreage for major crops in Illinois (mostly corn, soybeans,
and wheat). The entropy layer has also been summarized us-
ing the arithmetic average of the entropies within each JAS
segment. These summary statistics allow one to conduct pre-
liminary analyses on the acreage-error heteroscedasticity at
the segment level as a function of average entropy. There-
fore, one can derive a threshold based on a given empirical
state-level quantile of the segment-average entropy such that
certain conditions are satisfied. For instance, possible condi-

tions can be set on the number of targeted segments or on the
crop-specific expected variability of acreage error.

It has been observed (as shown in Section 4) that the
smallest average entropies are associated with lower acreage
errors and that the 20% empirical quantile can be a good
threshold candidate selecting lower-entropy JAS segments
for imputation procedures.

4. RESULTS AND DISCUSSION

Table 1 shows the corn and soybean producer and user accu-
racies for 2018, 2019 and 2021. The June Area Survey was
not conducted in 2020 so is excluded from this study. Pro-
ducer accuracy indicates omission or false negative error and
the user accuracy indicates commission error or false posi-
tive error [10]. Corn and soybeans are mostly present in bi-
nary rotation patterns. Most of the accuracies in Table 1 are
over 80%, indicating good prediction performances of the TP
model. This is true even during a year affected by extreme
weather, such as 2019, when heavy precipitation and spring
snow melt resulted in flooding, saturated fields, and in some
cases, farmers were unable to plant.

Table 1. Producer and user accuracy for corn and soybeans
computed with respect to FSA ground reference data.

Corn Soybean
Year | Producer User | Producer User
2018 86.7% 88.1% 86.2% 83.5%
2019 84.2% 83.3% 88.3% T76.7%
2021 783% 85.2% 86.2% 79.8%

Table 2 shows the mean absolute error (MAE) and mean
error (ME) for corn and soybeans measured in acres per seg-
ment. Both MAE and ME have been computed using only
the segments flagged for imputation. This assumes that there
are no errors from unflagged segments, which undergo in-
person enumeration. The MAE is the mean prediction error,
which is comprised of both bias and variability of the predic-
tive acreage assessment, and the ME indicates the presence of
bias. Both the MAE and ME vary across time; however, the
MAE for corn is more stable than the MAE for soybeans. The
ME in 2018 shows a negative bias for corn and a positive bias
for soybeans, while the MEs for the following years are nega-
tive for corn and almost zero for soybeans. The segment-level
errors (acreage per segment) reported in Table 2 are quite
small in general; in fact, the largest MAE is about the 3%
of the average size of a JAS segment (about 648 acres) in Illi-
nois.

The relationship between acreage error and segment-level
entropy for corn (Figure 2) and soybeans (Figure 3). In both
cases, the errors are well-centered on zero, indicating the ab-
sence of bias in the predicted acreage. However, the most
interesting aspect of these figures is the heteroscedastic be-



Table 2. Mean absolute error (MAE) and mean error (ME)
for corn and soybeans measured in acres per segment.

Corn Soybean
Year MAE ME MAE ME
(ac/seg.) (ac/seg.) | (ac/seg.) (ac/seg.)
2018 25.49 -15.95 25.06 16.81
2019 20.65 -9.37 15.37 -0.84
2020 17.39 -2.15 16.54 -0.09

havior of the error; in fact, as the average entropy computed
at the segment level increases, the error variability increases.
Furthermore, the chosen threshold at the 20% empirical quan-
tile (shown as a red vertical line) seems to provide a reason-
able level to flag segments that provide more accurate acreage
predictions. Consequently, only segments below the red ver-
tical line would be recommended for imputation.

Acreage error and
entropy threshold for Corn
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Fig. 2. Average entropy versus acreage error at the segment-
level for corn in 2021. Red vertical line shows the chosen
threshold.

5. CONCLUSIONS

This paper proposes the use of TP for crop-specific prediction
and the development of corresponding entropy layers that can
be used to assess the level of crop prediction uncertainty. The
paper introduces a method to prioritize survey units for im-
putation or for data collection based on whether the predicted
value is sufficiently reliable. This novel approach can provide
a solid methodology for reducing survey costs and farmer re-
sponse burdens without introducing estimation bias or incur-
ring severe losses of statistical efficiency.
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